If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2-16=6
We move all terms to the left:
6k^2-16-(6)=0
We add all the numbers together, and all the variables
6k^2-22=0
a = 6; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·6·(-22)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{33}}{2*6}=\frac{0-4\sqrt{33}}{12} =-\frac{4\sqrt{33}}{12} =-\frac{\sqrt{33}}{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{33}}{2*6}=\frac{0+4\sqrt{33}}{12} =\frac{4\sqrt{33}}{12} =\frac{\sqrt{33}}{3} $
| 2x^2+12x+26=8 | | x^2-12x+37=2 | | -53x=317 | | (x+1)(x+2)(x+3)(x+6)−3x^2=0 | | 10=h+2 | | y/9-1=-3 | | (x+1)(x+2)(x+3)(x+6)−3x2=0 | | y=6(14)+38 | | 27+u=4u | | 3x^+8=155 | | 22+x=-27 | | 4xx2x-12=180 | | 2x^+8x-640=0 | | 1/3(n+3)=1/3n+3 | | 13x=27+4x | | -117=9(u-3) | | 8-7y=-13 | | 10w145=955 | | 3x=7-5x/4 | | 10x-22=33–x | | 8x+10=88 | | (−7.4)+e=9.11 | | 12=n-n | | 22-3x÷4=2x | | 48x(-8)=-6 | | 7+(3z-8)=8+z | | 13(n+3)=13n+43 | | 16x2−81=0 | | 13(n+3)=13n+313 | | 6(t+20=-12 | | 13(n+3)=13n+1 | | 8d+10=88 |